176 research outputs found

    Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    Get PDF
    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy

    Exploiting combinatorial cultivation conditions to infer transcriptional regulation

    Get PDF
    BACKGROUND: Regulatory networks often employ the model that attributes changes in gene expression levels, as observed across different cellular conditions, to changes in the activity of transcription factors (TFs). Although the actual conditions that trigger a change in TF activity should form an integral part of the generated regulatory network, they are usually lacking. This is due to the fact that the large heterogeneity in the employed conditions and the continuous changes in environmental parameters in the often used shake-flask cultures, prevent the unambiguous modeling of the cultivation conditions within the computational framework. RESULTS: We designed an experimental setup that allows us to explicitly model the cultivation conditions and use these to infer the activity of TFs. The yeast Saccharomyces cerevisiae was cultivated under four different nutrient limitations in both aerobic and anaerobic chemostat cultures. In the chemostats, environmental and growth parameters are accurately controlled. Consequently, the measured transcriptional response can be directly correlated with changes in the limited nutrient or oxygen concentration. We devised a tailor-made computational approach that exploits the systematic setup of the cultivation conditions in order to identify the individual and combined effects of nutrient limitations and oxygen availability on expression behavior and TF activity. CONCLUSION: Incorporating the actual growth conditions when inferring regulatory relationships provides detailed insight in the functionality of the TFs that are triggered by changes in the employed cultivation conditions. For example, our results confirm the established role of TF Hap4 in both aerobic regulation and glucose derepression. Among the numerous inferred condition-specific regulatory associations between gene sets and TFs, also many novel putative regulatory mechanisms, such as the possible role of Tye7 in sulfur metabolism, were identified

    Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: A quantitative analysis of a compendium of chemostat-based transcriptome data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microorganisms adapt their transcriptome by integrating multiple chemical and physical signals from their environment. Shake-flask cultivation does not allow precise manipulation of individual culture parameters and therefore precludes a quantitative analysis of the (combinatorial) influence of these parameters on transcriptional regulation. Steady-state chemostat cultures, which do enable accurate control, measurement and manipulation of individual cultivation parameters (e.g. specific growth rate, temperature, identity of the growth-limiting nutrient) appear to provide a promising experimental platform for such a combinatorial analysis.</p> <p>Results</p> <p>A microarray compendium of 170 steady-state chemostat cultures of the yeast <it>Saccharomyces cerevisiae </it>is presented and analyzed. The 170 microarrays encompass 55 unique conditions, which can be characterized by the combined settings of 10 different cultivation parameters. By applying a regression model to assess the impact of (combinations of) cultivation parameters on the transcriptome, most <it>S. cerevisiae </it>genes were shown to be influenced by multiple cultivation parameters, and in many cases by combinatorial effects of cultivation parameters. The inclusion of these combinatorial effects in the regression model led to higher explained variance of the gene expression patterns and resulted in higher function enrichment in subsequent analysis. We further demonstrate the usefulness of the compendium and regression analysis for interpretation of shake-flask-based transcriptome studies and for guiding functional analysis of (uncharacterized) genes and pathways.</p> <p>Conclusion</p> <p>Modeling the combinatorial effects of environmental parameters on the transcriptome is crucial for understanding transcriptional regulation. Chemostat cultivation offers a powerful tool for such an approach.</p

    Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts

    Get PDF
    Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make–accumulate–consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect

    De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology

    Get PDF
    Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization compared to the reference strain S. cerevisiae S288C were analyzed. In addition to a few large deletions and duplications, nearly 3000 indels were identified in the CEN.PK113-7D genome relative to S288C. These differences were overrepresented in genes whose functions are related to transcriptional regulation and chromatin remodelling. Some of these variations were caused by unstable tandem repeats, suggesting an innate evolvability of the corresponding genes. Besides a previously characterized mutation in adenylate cyclase, the CEN.PK113-7D genome sequence revealed a significant enrichment of non-synonymous mutations in genes encoding for components of the cAMP signalling pathway. Some phenotypic characteristics of the CEN.PK113-7D strains were explained by the presence of additional specific metabolic genes relative to S288C. In particular, the presence of the BIO1 and BIO6 genes correlated with a biotin prototrophy of CEN.PK113-7D. Furthermore, the copy number, chromosomal location and sequences of the MAL loci were resolved. The assembled sequence reveals that CEN.PK113-7D has a mosaic genome that combines characteristics of laboratory strains and wild-industrial strains

    The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii

    Get PDF
    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13)C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13)C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2), C(3) and C(4). The incorporation of [U-(14)C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.This work was supported by Fundacao para a Ciencia e Tecnologia (FCT), Portugal Grant PTDC/AGR-ALI/102608/2008 and by project FCOMP-01-0124-FEDER- 007047 and by FEDER through POFC - COMPETE and national funds from FCT - project PEst-C/BIA/UI4050/2011. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Epistasis for Growth Rate and Total Metabolic Flux in Yeast

    Get PDF
    Studies of interactions between gene deletions repeatedly show that the effect of epistasis on the growth of yeast cells is roughly null or barely positive. These observations relate generally to the pace of growth, its costs in terms of required metabolites and energy are unknown. We measured the maximum rate at which yeast cultures grow and amounts of glucose they consume per synthesized biomass for strains with none, single, or double gene deletions. Because all strains were maintained under a fermentative mode of growth and thus shared a common pattern of metabolic processes, we used the rate of glucose uptake as a proxy for the total flux of metabolites and energy. In the tested sample, the double deletions showed null or slightly positive epistasis both for the mean growth and mean flux. This concordance is explained by the fact that average efficiency of converting glucose into biomass was nearly constant, that is, it did not change with the strength of growth effect. Individual changes in the efficiency caused by gene deletions did have a genetic basis as they were consistent over several environments and transmitted between single and double deletion strains indicating that the efficiency of growth, although independent of its rate, was appreciably heritable. Together, our results suggest that data on the rate of growth can be used as a proxy for the rate of total metabolism when the goal is to find strong individual interactions or estimate the mean epistatic effect. However, it may be necessary to assay both growth and flux in order to detect smaller individual effects of epistasis

    Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Acidithiobacillus ferrooxidans </it>is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism.</p> <p>Results</p> <p>The genome of the type strain <it>A. ferrooxidans </it>ATCC 23270 was sequenced and annotated to identify general features and provide a framework for <it>in silico </it>metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes.</p> <p>Conclusion</p> <p>Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of <it>A. ferrooxidans </it>in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.</p
    • …
    corecore